Computing Bi-Clusters for Microarray Analysis

Yu Lin

December 21, 2006
General Bi-clustering Problem

- **Input**: a $n \times m$ matrix A.
- **Output**: a sub-matrix $A_{P,Q}$ of A such that the rows of $A_{P,Q}$ are *similar*. That is, all the rows are identical.

Why sub-matrix?
A subset of *genes* are co-regulated and co-expressed under specific *conditions*. It is interesting to find the subsets of genes and conditions.
Similarity of Rows (1-5)

1. All rows are identical
 1 1 2 3 2 3 3 2
 1 1 2 3 2 3 3 2
 1 1 2 3 2 3 3 2

2. All the elements in a row are identical
 1 1 1 1 1 1 1 1
 2 2 2 2 2 2 2 2
 5 5 5 5 5 5 5 5
 (the same as 1 if we treat columns as rows)
Similarity of Rows (1-5)

3. The curves for all rows are similar (additive)
 \[a_{i,j} - a_{i,k} = c(j, k) \] for \(i = 1, 2, \ldots, m \). Case 3 is equivalent to case 2 (thus also case 1) if we construct a new matrix \(a_{i,j}^* = a_{i,j} - a_{i,p} \) for a fixed \(p \) indicate a row.
Similarity of Rows (1-5)

4. The curves for all rows are similar (multiplicative)

\[
\begin{align*}
 a_{1,1} & \quad a_{1,2} & \quad a_{1,3} & \quad \ldots & \quad a_{1,m} \\
 c_{1}a_{1,1} & \quad c_{1}a_{1,2} & \quad c_{1}a_{1,3} & \quad \ldots & \quad c_{1}a_{1,m} \\
 c_{2}a_{1,1} & \quad c_{2}a_{1,2} & \quad c_{2}a_{1,3} & \quad \ldots & \quad c_{2}a_{1,m} \\
 & \quad \ldots & \quad \ldots & \quad \ldots & \quad \ldots \\
 c_{n}a_{1,1} & \quad c_{n}a_{1,2} & \quad c_{n}a_{1,3} & \quad \ldots & \quad c_{n}a_{1,m}
\end{align*}
\]

Transfer to case 2 (thus case 1) by taking log and subtraction. Case 3 and Case 4 are called bi-clusters with coherent values.
Similarity of Rows (1-5)

5. The curves for all rows are similar (multiplicative and additive)

\[a_{i,j} = c_i a_{k,j} + d_i \]

Transfer to case 2 (thus case 1) by subtraction of a fixed row (row i), taking log and subtraction of row i again. The basic model: All the rows in the sub-matrix are identical.
Cheng and Church's model

The model introduced a similarity score called the mean squared residue score H to measure the coherence of the rows and columns in the submatrix.

$$H(P, Q) = \frac{1}{|P||Q|} \sum_{i \in P, j \in Q} (a_{i,j} - a_{i,Q} - a_{P,j} + a_{P,Q})^2$$

where

$$a_{i,Q} = \frac{1}{|Q|} \sum_{j \in Q} a_{i,j}, \quad a_{P,j} = \frac{1}{|P|} \sum_{i \in P} a_{i,j}, \quad a_{P,Q} = \frac{1}{|P||Q|} \sum_{i \in P, j \in Q} a_{i,j}.$$

If there is no error, $H(P, Q) = 0$ for case 1, 2 and 3. A lot of heuristics (programs) have been produced.
Our Problem Definition

- Consensus Sub-matrix Problem
- Bottleneck Sub-matrix Problem
Consensus Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that

$$\sum_{r_i \in P} d(r_i|Q, z)$$

is minimized.

Here $d(,)$ is the Hamming distance.
Bottleneck Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that for any r_i in P

$$d(r_i|Q,z) \leq d$$

and d is minimized

Here $d(\ ,\)$ is the Hamming distance.
NP-Hardness Results

- Theorem 1: Both consensus sub-matrix and bottleneck sub-matrix problems are NP-hard.

Proof: We use a reduction from maximum edge bipartite problem.
Approximation Algorithm for Consensus Sub-matrix Problem

- **Input**: a $n \times m$ matrix A, integers l and k.
- **Output**: a sub-matrix A_P, Q of A with l rows and k columns and a consensus row z (of k elements) such that

\[
\sum_{r_i \in P} d(r_i|Q, z) \text{ is minimized.}
\]

Here $d(\ , \)$ is the Hamming distance.
Basic Ideas

Assumptions: \(H_{opt} = \sum_{p_i \in P_{opt}} d(x_{p_i} | Q_{opt}, z_{opt}) = O(kl), \quad H_{opt} \times c' = kl \)
and \(|Q_{opt}| = k = O(n), \quad k \times c = n. \)

Basic Ideas: We use a random sampling technique to randomly select \(O(\log m) \) columns in \(Q_{opt} \), enumerate all possible vectors of length \(O(\log m) \) for those columns. At some moment, we know \(O(\log m) \) bits of \(r_{opt} \) and we can use the partial \(z_{opt} \) to select the \(l \) rows which are closest to \(z_{opt} \) in those \(O(\log m) \) bits. After that we can construct a consensus vector \(r \) as follows: for each column, choose the (majority) letter that appears the most in each of the \(l \) letters in the \(l \) selected rows. Then for each of the \(n \) columns, we can calculate the number of mismatches between the majority letter and the \(l \) letters in the \(l \) selected rows. By selecting the best \(k \) columns, we can get a good solution.
Basic Ideas

- How to randomly select $O(\log m)$ columns in Q_{opt} while Q_{opt} is unknown?
- Our new idea is to randomly select a set B of $(c + 1)\log m$ columns from A and enumerate all size $\log m$ subsets of B in time $O(m^{c+1})$ which is polynomial in terms of the input size $O(mn)$. We can show that with high probability, we can get a set of $\log m$ columns randomly selected from Q_{opt}.
Algorithm 1 for The Consensus Submatrix Problem

Input: one $m \times n$ matrix A, integers l and k, and $\epsilon > 0$

Output: a size l subset P of rows, a size k subset Q of columns and a length k consensus vector z

Step 1: randomly select a set B of $\lceil (c + 1)(\frac{4 \log m}{\epsilon^2} + 1) \rceil$ columns from A.

(1.1) for every size $\lceil \frac{4 \log m}{\epsilon^2} \rceil$ subset R of B do

(1.2) for every $z^{|R|} \in \Sigma^{|R|}$ do

(a) Select the best l rows $P = \{p_1, ..., p_l\}$ that minimize $d(z^{|R|}, x_i^{|R|})$.

(b) for each column j do

Compute $f(j) = \sum_{i=1}^{l} d(s_j, a_{p_i,j})$, where s_j is the majority element of the l rows in P in column j. Select the best k columns $Q = \{q_1, ..., q_k\}$ with minimum value $f(j)$ and let $z(Q) = s_{q_1}s_{q_2}...s_{q_k}$.

(c) Calculate $H = \sum_{i=1}^{l} d(x_{p_i}^{|Q|}, z)$ of this solution.

Step 2: Output P, Q and z with minimum H.
Proofs

► Lemma 1: With probability at most \(m - \frac{2}{\epsilon^2 c^2 (c+1)} \), no subset \(R \) of size \(\left\lceil \frac{4 \log m}{\epsilon^2} \right\rceil \) used in Step 1 of Algorithm 1 satisfies \(R \subseteq Q_{opt} \).

► Lemma 2: Assume \(|R| = \left\lceil \frac{4 \log m}{\epsilon^2} \right\rceil \) and \(R \subseteq Q_{opt} \). Let \(\rho = \frac{k}{|R|} \). With probability at most \(m^{-1} \), there is a row \(x_i \) in \(X \) satisfying

\[
\frac{d(z_{opt} | Q_{opt}), x_i | Q_{opt}) - \epsilon k}{\rho} > d(z_{opt} | R), x_i | R).
\]

With probability at most \(m^{-\frac{1}{3}} \), there is a row \(x_i \) in \(X \) satisfying

\[
d(z_{opt} | R), x_i | R) > \frac{d(z_{opt} | Q_{opt}), x_i | Q_{opt}) + \epsilon k}{\rho}.
\]
Proofs

- Lemma 3: When $R \subseteq Q_{opt}$ and $z^R = z_{opt}^R$, with probability at most $2m^{-\frac{1}{3}}$, the set of rows $P = \{p_1, \ldots, p_l\}$ selected in Step 1 (a) of Algorithm 1 satisfies
 \[\sum_{i=1}^l d(z_{opt}, x_{p_i}|Q_{opt}) > H_{opt} + 2\epsilon kl. \]

- Theorem 2: For any $\delta > 0$, with probability at least
 \[1 - m^{-\frac{8c'}{\delta^2c'^2(c+1)}} - 2m^{-\frac{1}{3}}, \]
 Algorithm 1 will output a solution with consensus score at most $(1 + \delta)H_{opt}$ in $O(nm^{O(\frac{1}{\delta^2})})$ time.
Approximation Algorithm for Bottleneck Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that for any r_i in P

$$d(r_i|_Q, z) \leq d$$

and d is minimized

Here $d(\ , \)$ is the Hamming distance.
Basic Ideas

▶ Assumptions: $d_{opt} = MAX_{p_i \in P_{opt}} d(x_{p_i} | ^{Q_{opt}}, z_{opt}) = O(k)$, $d_{opt} \times c'' = k$ and $|Q_{opt}| = k = O(n)$, $k \times c = n$.

▶ Basic Ideas:
(1) Use random sampling technique to know $O(\log m)$ bits of z_{opt} and select l best rows like Algorithm 1.
(2) Use linear programming and randomized rounding technique to select k columns in the matrix.
Linear programming
Given a set of rows $P = \{p_1, \ldots, p_l\}$, we want to find a set of k columns Q and vector z such that bottleneck score is minimized.

$$\min d;$$
$$\sum_{i=1}^{n} \sum_{j=1}^{\left|\Sigma\right|} y_{i,j} = k,$$
$$\sum_{j=1}^{\left|\Sigma\right|} y_{i,j} \leq 1, i = 1, 2, \ldots, n,$$
$$\sum_{i=1}^{n} \sum_{j=1}^{\left|\Sigma\right|} \chi(\pi_j, \chi_{p_s,i})y_{i,j} \leq d, s = 1, 2, \ldots, l.$$

$y_{i,j} = 1$ if and only if column i is in Q and the corresponding bit in z is π_j.

Here, for any $a, b \in \Sigma$, $\chi(a, b) = 0$ if $a = b$ and $\chi(a, b) = 1$ if $a \neq b$.
Randomized rounding
To achieve two goals:
(1) Select \(k' \) columns, where \(k' \geq k - \delta d_{opt} \).
(2) Get integers values for \(y_{i,j} \) such that the distance (restricted on the \(k' \) selected columns) between any row in \(P \) and the center vector thus obtained is at most \((1 + \gamma) d_{opt} \).

Here \(\delta > 0 \) and \(\gamma > 0 \) are two parameters used to control the errors.
Lemma 4: When \(\frac{n \gamma^2}{3(2c'')^2} \geq 2 \log m \), for any \(\gamma, \delta > 0 \), with probability at most \(\exp(-\frac{n \delta^2}{2(2c'')^2}) + m^{-1} \), the rounding result \(y' = \{ y'_{1,1}, \ldots, y'_{1,|\Sigma|}, \ldots, y'_{n,1}, \ldots, y'_{n,|\Sigma|} \} \) does not satisfy at least one of the following inequalities,

\[
\sum_{i=1}^{n} \left(\sum_{j=1}^{|\Sigma|} y'_{i,j} \right) > k - \delta d_{opt},
\]

and for every row \(x_{p_s} (s = 1, 2, \ldots, l) \),

\[
\sum_{i=1}^{n} \left(\sum_{j=1}^{|\Sigma|} \chi(\pi_j, x_{p_s,i})y'_{i,j} \right) < \overline{d} + \gamma d_{opt}.
\]
Algorithm 2 for The bottleneck Sub-matrix Problem

Input:
one matrix $A \in \Sigma^{m \times n}$, integer l, k, a row $z \in \Sigma^n$ and small numbers $\epsilon > 0$, $\gamma > 0$ and $\delta > 0$.

Output: a size l subset P of rows, a size k subset Q of columns and a length k consensus vector z.

If $\frac{n \gamma^2}{3 (cc')^2} \leq 2 \log m$ then try all size k subset Q of the n columns and all z of length k to solve the problem.

If $\frac{n \gamma^2}{3 (cc')^2} > 2 \log m$ then

Step 1: randomly select a set B of $\lceil \frac{4(c+1) \log m}{\epsilon^2} \rceil$ columns from A. For every $\lceil \frac{4 \log m}{\epsilon^2} \rceil$ size subset R of B do

For every $z^R \in \Sigma^{|R|}$ do

(a) Select the best l rows $P = \{p_1, ..., p_l\}$ that minimize $d(z^R, x_i^R)$.

(b) Solve the optimization problem by linear programming and randomized rounding to get Q and z.

Step 2: Output P, Q and z with minimum bottleneck score d.
Proofs

Lemma 5: When $R \subseteq Q_{\text{opt}}$ and $z|^R = z_{\text{opt}}|^R$, with probability at most $2m^{-\frac{1}{3}}$, the set of rows $P = \{p_1, \ldots, p_l\}$ obtained in Step 1(a) of Algorithm 2 satisfies
$$d(z_{\text{opt}}, x_{p_i}|Q_{\text{opt}}) > d_{\text{opt}} + 2\epsilon k$$ for some row $x_{p_i}(1 \leq i \leq l)$.

Theorem 3: With probability at least
$$1 - m^{-\frac{2}{e^2c^2(c+1)}} - 2m^{-\frac{1}{3}} - \exp\left(-\frac{m\delta^2}{2(c'c'')^2}\right) - m^{-1},$$
Algorithm 2 runs in time $O(n^{O(1)} m^{O(\frac{1}{c^2} + \frac{1}{c'^2})})$ and obtains a solution with bottleneck score at most $(1 + 2c''\epsilon + \gamma + \delta)d_{\text{opt}}$ for any fixed $\epsilon, \gamma, \delta > 0$.
Thanks

- Acknowledgements
 This work is fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. CityU 1070/02E].
 This work is collaborated with Dr. Lusheng Wang and Xiaowen Liu in City University of Hong Kong, Hong Kong, China.
Let X_1, X_2, \ldots, X_n be n independent random 0-1 variables, where X_i takes 1 with probability p_i, $0 < p_i < 1$. Let $X = \sum_{i=1}^{n} X_i$, and $\mu = E[X]$. Then for any $0 < \epsilon \leq 1$,

$$\Pr(X > \mu + \epsilon n) < e^{-\frac{1}{3}n\epsilon^2},$$

$$\Pr(X < \mu - \epsilon n) \leq e^{-\frac{1}{2}n\epsilon^2}.$$