Lecture T4: Computability

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:
. N card types (can use as many of each type as possible).
. Each card has a top string and bottom string.

Example 1: BAB A AB BA
A ABA B B

0 1 2 3

Puzzle:

. Is it possible to arrange cards so that top and bottom strings are
the same?

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:
. N card types (can use as many of each type as possible).
. Each card has a top string and bottom string.

Example 1: BAB A AB BA
A ABA B B

0 1 2 3

Puzzle:

. Is it possible to arrange cards so that top and bottom strings are
the same?

Solution 1. A BA | BAB| AB A
e ABA| B A B | ABA

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:
. N card types (can use as many of each type as possible).
. Each card has a top string and bottom string.

Example 2: A ABA B
BAB B A B

0 1 2 3

Puzzle:

. Is it possible to arrange cards so that top and bottom strings are
the same?

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:
N card types (can use as many of each type as possible).
Each card has a top string and bottom string.

Example 2: A ABA B
BAB B A B

0 1 2 3

Puzzle:

Is it possible to arrange cards so that top and bottom strings are
the same?

Solution 2.
re

PCP Puzzle Contest

S X 11A [Al]1] BL|| B |[[1AE
S[11111X] | | 1 Al [B B A E
0 1 2 3 4 5 6 7 8 9 10

Contest:
. Additional restriction: string must start with ’'S’.
Be the first to solve this puzzle!
- extra credit for first correct solution

. Check solution by putting STRING ONLY (blanks and line breaks
OK) in afile sol uti on. t xt, then type
pcpl26 < solution. txt

Hopeless challenge for the bored:

. Write a program that reads a set of Post cards, and determines
whether or not there is a solution.

Overview

Formal language.
Rigorously express computational problems.
Ex: L={23,5,7,11,13,17,...}

Abstract machines recognize languages.
Ex. Is 977 prime? Is 977 in L?
Essence of computers.

This lecture:
. What is an "algorithm"?

Is it possible, in principle, to write a program to solve any problem
(recognize any language)?

Background

Abstract models of computation help us learn:
Nature of machines needed to solve problems.
Relationship between problems and machines.
Intrinsic difficulty of problems.

As we make machines more powerful, we can recognize more
languages.

. Arethere languages that no machine can recognize?
e

. Arethere limits on the power of machines that we can imagine?

Pioneering work in the 1930’s. (Princeton = center of universe)
. Turing, Church, von Neumann, Godel. (inspiration from Hilbert)

. Automata, languages, computability, complexity, logic, rigorous
definition of "algorithm."

Undecidable Problems

Hilbert's 10th Problem.

. “Devise a process according to which it can be determined by a
finite number of operations whether a given multivariate
polynomial has an integral root.”

. Example 1: f(x,y,z) = 6x3yz2 + 3xy2 - x3 — 10
&

. Example 2: f(x,y) = x 2+y2 -3
ré

. Example 3: f(xy,z) = x "4y M- z"
rd

Andrew Wiles, 1995

Undecidable Problems

Hilbert's 10th Problem.

. “Devise a process according to which it can be determined by a
finite number of operations whether a given multivariate
polynomial has an integral root.”

rd
e

. Problem resolved in very surprising way. (Matijasevic, 1970)
rd
e NN

. How can we assert such a mind-boggling statement?

Undecidable Problems

Hilbert’s 10th Problem.
Post's Correspondence Problem.
Halting Problem.

. Write a C program that reads in another program and its inputs,
and decides whether or not it goes into an infinite loop.

- infinite loop often signifies a bug

. Program 1.
-864242424242424
-97531 while (x > 1) {
if (x >2)
» X = X — 2;
else
X=X+2;
}

Undecidable Problems

Hilbert’s 10th Problem.
Post's Correspondence Problem.
Halting Problem.

. Write a C program that reads in another program and its inputs,
and decides whether or not it goes into an infinite loop.

- infinite loop often signifies a bug
allstone.c

. Program 2.
-8421
_7221134175226134020105168421 |[Wwhile (x > 1) {

if (x %2 == 0)

e X =x/ 2

el se
X = 3*X + 1;

Undecidable Problems

Hilbert’s 10th Problem.

Post's Correspondence Problem.
Halting Problem.

Program Equivalence.

Optimal Data Compression.
Virus Identification.

Impossible to write C program to solve any of these problem!

TM : As Powerful As TOY Machine

Turing machines are strictly more powerful than FSA, PDA, LBA
because of infinite tape memory.

Power = ability to recognize languages.

Turing machines are at least as powerful as a TOY machine:
Encode state of memory, PC, etc. onto Turing tape.
Develop TM states for each instruction.

. Can do because all instructions:
- examine current state
- make well-define changes depending on current state

Works for all real machines.
Can simulate at machine level, gate level,

20

TM: Equal Power as TOY and C

Turing machines are equivalent in power to C programs.
C program O TOY program (Lecture A2)
. TOY program O T™M (previous slide)
. TM O C program (TM simulator, Lecture T2)

Works for all real programming languages.

Is this assumption
reasonable?

Assumption: TOY machine and C program
have unbounded amount of memory.
Otherwise TM is strictly more powerful.

2

Church-Turing Thesis

Church-Turing thesis (1936):
Q. Which problems can a Turing machine solve?
A. Any problem that any real computer can solve.

"Thesis" and not a mathematical theorem.
rd

Implications:
Provides rigorous definition for algorithm .
rd

Universality among computational models.
- if a problem can be solved by TM, then it can be solved on
EVERY general-purpose computer.
- if a problem can’t be solved by TM, then it can’t be solve on
ANY physical computer

Evidence Supporting Church-Turing Thesis

Imagine TM with more power.
. Composition of TM’s, multiple heads, more tapes, 2D tapes.
. Nondeterminism.

Different ways to define "computable."”
. TM, circuits, grammar, A-calculus, p-recursive functions.
. Conway's game of life.

Conventional computers.
. ENIAC, TOY, Pentium ll, . . .

New speculative models of computation.
. DNA computers, quantum computers, soliton computers.

23

A More Powerful Computer

Post machine (PCP-286).
. Input: set of Post cards.
. Output.
- YES light if PCP is solvable for these cards
- NO light if PCP has no solution

PCP is strictly more powerful than: NI/
. Turing machine.

. TOY machine. YES NO
. Cprogramming language. PCP-286

. iMac.

. Any conceivable super-computer.

Why doesn't it violate Church-Turing thesis?

24

TM: A General Purpose Machine

Each TM solves one particular problem.
. Ex: is theinteger x prime?
. Analogy: computer algorithm.

. Similar to ancient special-purpose computers (Analytic Engine)
prior to von Neumann stored-program computers.

Goal: "general purpose machine" that can solve many problems.
. Simulate the operations of any special-purpose TM.
. Analogy: computer than can execute any algorithm.
. How?
e

e

25

Representation of a Turing Machine

Special-purpose TM consists of 3 ingredients.
. TM program.
. Initial tape contents.
. Current TM state.

26

Universal Turing Machine

Universal Turing Machine (UTM),
. A specific TM that simulates operations of any TM.

How to create.
Encode 3 ingredients of TM using 3 tapes.

UTM simulates the TM.
Tape 1: encode TM tape

-read tape 1
-read tape 3 |||0|1|1|0|1||‘
- consult tape 2 for what to do A

- write tape 1 if necessary

_move head 1 Tape 2: encode TM program

- write tape 3 .|.|8|1|O|L|8|O|.|.‘
A
Tape 3: encode TM current state
UTM T Ts[t[alt [e]8].]|
A

27

Universal Turing Machine

Universal Turing Machine (UTM),
. A specific TM that simulates operations of any TM.

How to create.
Encode 3 ingredients of TM using 3 tapes.
UTM simulates the TM.

Like the fetch-increment-execute cycle of TOY.
rd
e
rd

. Can reduce 3-tape TM to single tape one.
e

28

Implications of Universal Turing Machine

Existence of UTM has profound implications.
. "Invention" of general-purpose computer.

- stimulated development of stored-program computers
(von Neumann machines)

. "Invention" of software.
Universal framework for studying limitations of computing devices.
. Can simulate any machine (including itself)!

29

Halting Problem

Halting problem.

Devise a TM that reads in another TM (encoded in binary) and its
initial tape, and determines whether or not that TM would ever
reach ayes or no state.

. Write a C program that reads in another program and its inputs,
and determines whether or not it goes into an infinite loop.

Halting problem is unsolvable.
No TM can solve this problem.
Not possible to write a C program either.

We prove that the halting problem is not solvable.
Intuition of proof: self-reference.

31

Warmup: Grelling’s Paradox

Grelling’s paradox:
. Divide all adjectives into two categories:
- autological: self-descriptive
- heterological: not self-descriptive

autological adjectives

heterological adjectives

pentasyllabic bisyllabic
awkwardnessful palindromic
recherché edible

. How do we categorize heterological?

32

Warmup: Grelling’s Paradox

Grelling’s paradox:
. Divide all adjectives into two categories:
- autological: self-descriptive
- heterological: not self-descriptive

autological adjectives

heterological adjectives

pentasyllabic bisyllabic
awkwardnessful palindromic
recherché edible

heterological

. How do we categorize heterological?
- suppose it's autological
rd

33

Warmup: Grelling’s Paradox

Grelling’s paradox:
. Divide all adjectives into two categories:
- autological: self-descriptive
- heterological: not self-descriptive

autological adjectives

heterological adjectives

pentasyllabic bisyllabic

awkwardnessful palindromic

recherché edible
rheterotogrcar heterological

. How do we categorize heterological?
- suppose it's heterological
e

Warmup: Grelling’s Paradox

Grelling’s paradox:
. Divide all adjectives into two categories:
- autological: self-descriptive
- heterological: not self-descriptive

autological adjectives

heterological adjectives

pentasyllabic bisyllabic

awkwardnessful palindromic

recherché edible
reterofogical— reterofogical—

. How do we categorize heterological?
- not possible

- we can’t have words with these meanings!
(or we can’t partition adjectives into these two groups)

35

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f
and its input x, and outputs yes if f(x) halts, and no otherwise.

. Proof by contradiction.

. Note: Halt(f, x) always returns yes or no.
(infinite loop not possible)

#define YES 1
#define NO 0

int Halt(char f[], char x[]) { <‘—|functi0; fdand its input
if (?2?22) ™ |x encoded as strings

return YES;
el se
return NG

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f
and its input x, and outputs yes if f(x) halts, and no otherwise.

. Construct program Strange(f) as follows:
- calls Halt(f, f)
- halts if Halt(f, f) outputs no

f is a string so legal to
use for either input

- goes into infinite loop if Halt(f, f) outputs yes
. In other words:

- if f(f) does not halt then Strange(f) halts

- if f(f) halts then Strange(f) does not halt

Strange(f)

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f
and its input x, and outputs yes if f(x) halts, and no otherwise.

. Construct program Strange(f) as follows:

— calls Halt(f, f)

- halts if Halt(f, f) outputs no

- goes into infinite loop if Halt(f, f) outputs yes
. In other words:

- if f(f) does not halt then Strange(f) halts

- if f(f) halts then Strange(f) does not halt

. Call Strange with ITSELF as input.
- if Strange(Strange) does not halt then Strange(Strange) halts
- if Strange(Strange) halts then Strange(Strange) does not halt
. Either way, a contradiction. Hence Halt(f,x) cannot exist. II

void Strange(char f[]) {
if (Halt(f, f) == NO
return;
el se
whi | e(1)
: [/ infinite | oop
}
Consequences

Halting problem is "not artificial."
. Undecidable problem reduced to simplest form to simplify proof.
. Closely related to practical problems.

- Hilbert’s 10th problem, Post's correspondence problem,
program equivalence, optimal data compression

How to show new problem X is undecidable?
. Use fact that Halting problem is undecidable.

. Design algorithm to solve Halting problem, using (alleged)
algorithm for X as a subroutine.

. See Reduction in Lecture T6.

39

Implications

Practical:
. Work with limitations.
Recognize and avoid unsolvable problems.
Learn from structure.
- same theory tells us about efficiency of algorithms (see T5)

Philosophical (caveat: ask a philosopher):

. We "assume" that any step-by-step reasoning will solve any
technical or scientific problem.

. "Not quite" says the halting problem.
. Anything that is like (could be) a computer has the same flaw:

RN R

Summary

What is an algorithm?
Informally, step-by-step procedure for solving a problem.
Formally, Turing machine.

Turing’s key ideas:
. Computing is same as manipulating symbols.
- can encode numbers as strings
Existence of general-purpose computer (UTM).
- programmable machine

What is a general-purpose computer (UTM)?
. Can be "programmed" to implement any algorithm.
. iMac, Dell, Sun UltraSparc, TOY (assuming unlimited memory).

Is it possible, in principle, to write a program to solve any problem?
No.

a

