CS612 Algorithm Design and Analysis

Lecture 17. String matching ?

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

IThe slides are made based on Randomized Algorithm by R. Motwani and P.
Raghavan, http://www-igm.univ-mlv.fr/ lecroq/string/, and-a lecture by T. Chan.

Dongbo Bu Omputlng €ChnNolOg Cs612 Algorithm Design and Analysis

Outline |

@ Introduction
@ DFA and KMP methods
@ A Monte Carlo method

@ Rabin-Karp randomized algrorithm;

Dongbo Bu CS612 Algorithm Design and Analysis

STRINGMATCHING problem |

INPUT:

Given strings t = t1ta...t,,(¢t; € {0,1},i=1,2,...,n) and p = p1p2...pm,
(p; €{0,1},7=1,2,...,m), m <m;

OUTPUT:

Is p a substring of t7

t is called “text” and p is called “pattern”.

CS612 Algorithm Design and Analysis

Dongbo Bu

DFA-based methods

@ Brute-force method: checking every possible occurence of p in t.
Time-complexity: O(nm) (when searching for a™~'b in a™ for
instance.)

9@ DFA-based method:

@ building a DFA for all string containing p;

© running this DFA on ¢;

© Time-complexity: O(f(m) + n). Here, f(m) denotes the time to
build a DFA. It is possible that f(m) = O(m).

eg.: p=101

0/1

Dongbo Bu CS612 Algorithm Design and Analysis

KMP and BM algorithms

@ Karp-Morris-Parrat method:

o Similar to DFA but with a “compressed” representation of DFA.

i 0 1
z[i] G C
kmpNext[i] | =1 0

© Boyer-Moore method:

o The Boyer-Moore algorithm is considered as the most efficient
string-matching algorithm in usual applications.

@ The algorithm scans the characters of the pattern from right to left
beginning with the rightmost one. In case of a mismatch (or a
complete match of the whole pattern) it uses two precomputed
functions to shift the window to the right. These two shift functions
are called the good-suffix shift (also called matching shift and the
bad-character shift (also called the occurrence shift).

Dongbo Bu CS612 Algorithm Design and Analysis

An interesting sub-problem |

Problem:
@ Alice has a string u, and Bob has a string v, u,v € {0,1}*,
lu] = |v] = n.
@ They want to see whether u = v.
Possible ways:
Q transmit n bits;
Q transmit a “fingerprint” with O(dlogn) bits;

Dongbo Bu CS612 Algorithm Design and Analysis

A randomized finger-print:
o Let z ={0,1,..., P — 1}, where P is a large prime number;
@ Define a finger-print Fy : {0,1}* — {0,1,2,..., P — 1} as follows:
Fylan—1an—2...a0) =Y, a;2" mod P.
Monte-Carlo algo:
Q z =random(0, P — 1), where P is a large prime number;
Q Alice transfers F,(u) to Bob;

© Bob calculate F,(v) first, and reports “Yes" if F,(u) = F,(v);
Otherwise reports “No” (definitely “No”).

Error analysis:
Q Case 1: (u =w). Correct.

Dongbo Bu CS612 Algorithm Design and Analysis

Q Case 2 (u # v) Error: Bob reports “Yes", i.e., F,(u) = F,(v) when
u # v.

Pr(Fy(u) = Fe(v)u # v)

n—1 n—1
= Pr(z wxt = Z vz’ mod P)
i=0 i=0

n—1

= Pr(Z(ui —)z’ = 0)
=0

< n; by Fact 1.

Q Pr(F,(u) = F,(v)) < -5 when setting P = nd*1.
Fact 1:
A polynomial of degree < n — 1 has at most n — 1 roots mod P.

Dongbo Bu Omputlng €ChnNolOg Cs612 Algorithm Design and Analysis

Rabin-Karp randomized algorithm for string matching. |

@ Rabin-Karp Algo (s,1):
Q z =random(0,P — 1),
e A= FI(S()Sl...Sm), B = Fx(totl...tm);
Q fori=0ton—m

0 //compare Si4+18i4+2...8i+m with t1ts...tm;
e A= (A — ai+1xm)x + Qitmi1 mod P;
o if (A== B) return "possibly match”;
@ return “No”;

@ Time-complexity: O(n).
@ Error probability:
Q Let E; denote the event: algo errs at the i-th iteration. We have:
Q Pr(E;) < 2L
Q Pr(Error) = Pr(Ui g"Ey) <>, Pr(l:) <2 < &
Q Pr(Error) < by setting P = nt1,

_nd

Dongbo Bu CS612 Algorithm Design and Analysis

A Las Vegas version

Algo:
© Run Karp-Rabin;

Q if it returns “No", returns “No";

O else

9 Verify s =t ;

o if so, return “Yes"; else goto Step 1;
Analysis:

@ If Karp-Rabin is correct: O(n) time is enough;
@ otherwise, the execution of brute-force algo costs O(mn) time.

Expected running time: E(T) = O(n)(1 — =) + O(mn)-% = O(n).
(setting d = 1)

Dongbo Bu CS612 Algorithm Design and Analysis

