
CS612 Algorithm Design and Analysis
Lecture 17. String matching 1

Dongbo Bu

Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China

1The slides are made based on Randomized Algorithm by R. Motwani and P.
Raghavan, http://www-igm.univ-mlv.fr/ lecroq/string/, and a lecture by T. Chan.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

Outline I

Introduction

DFA and KMP methods

A Monte Carlo method

Rabin-Karp randomized algrorithm;

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

StringMatching problem I

INPUT:

Given strings t = t1t2...tn,(ti ∈ {0, 1}, i = 1, 2, ..., n) and p = p1p2...pm,
(pj ∈ {0, 1}, j = 1, 2, ..., m), m ≤ n;
OUTPUT:

Is p a substring of t?

t is called “text” and p is called “pattern”.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

DFA-based methods

Brute-force method: checking every possible occurence of p in t.
Time-complexity: O(nm) (when searching for am−1b in an for
instance.)

DFA-based method:
1 building a DFA for all string containing p;
2 running this DFA on t;
3 Time-complexity: O(f(m) + n). Here, f(m) denotes the time to

build a DFA. It is possible that f(m) = O(m).

e.g.: p = 101

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

KMP and BM algorithms

1 Karp-Morris-Parrat method:

Similar to DFA but with a “compressed” representation of DFA.

2 Boyer-Moore method:

The Boyer-Moore algorithm is considered as the most efficient
string-matching algorithm in usual applications.
The algorithm scans the characters of the pattern from right to left
beginning with the rightmost one. In case of a mismatch (or a
complete match of the whole pattern) it uses two precomputed
functions to shift the window to the right. These two shift functions
are called the good-suffix shift (also called matching shift and the
bad-character shift (also called the occurrence shift).

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

An interesting sub-problem I

Problem:

Alice has a string u, and Bob has a string v, u, v ∈ {0, 1}∗,
|u| = |v| = n.

They want to see whether u = v.

Possible ways:

1 transmit n bits;

2 transmit a “fingerprint” with O(d log n) bits;

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

A randomized finger-print:

Let x = {0, 1, ..., P − 1}, where P is a large prime number;

Define a finger-print Fx : {0, 1}∗ → {0, 1, 2, ..., P − 1} as follows:
Fx(an−1an−2...a0) =

∑
i aix

i mod P .

Monte-Carlo algo:

1 x = random(0, P − 1), where P is a large prime number;

2 Alice transfers Fx(u) to Bob;

3 Bob calculate Fx(v) first, and reports “Yes” if Fx(u) = Fx(v);
Otherwise reports “No” (definitely “No”).

Error analysis:

1 Case 1: (u = v). Correct.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

2 Case 2: (u 6= v) Error: Bob reports “Yes”, i.e., Fx(u) = Fx(v) when
u 6= v.

Pr(Fx(u) = Fx(v)|u 6= v)

= Pr(

n−1∑

i=0

uix
i =

n−1∑

i=0

vix
i mod P)

= Pr(

n−1∑

i=0

(ui − vi)x
i = 0)

≤
n − 1

P
by Fact 1.

3 Pr(Fx(u) = Fx(v)) ≤ 1

nd when setting P = nd+1.

Fact 1:
A polynomial of degree ≤ n − 1 has at most n − 1 roots mod P .

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

Rabin-Karp randomized algorithm for string matching. I

Rabin-Karp Algo (s, t):
1 x = random(0, P − 1);
2 A = Fx(s0s1...sm), B = Fx(t0t1...tm);
3 for i = 0 to n − m
4 //compare si+1si+2...si+m with t1t2...tm;
5 A = (A − ai+1x

m)x + ai+m+1 mod P ;
6 if (A == B) return “possibly match”;
7 return “No”;

Time-complexity: O(n).

Error probability:
1 Let Ei denote the event: algo errs at the i-th iteration. We have:
2 Pr(Ei) ≤

m−1

P

3 Pr(Error) = Pr(∪n−m

i=0 Ei) ≤
P

i
Pr(Ei) ≤

nm

P
≤ n

2

P

4 Pr(Error) ≤ 1

nd
by setting P = nd+1.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

A Las Vegas version

Algo:

1 Run Karp-Rabin;

2 if it returns “No”, returns “No”;

3 else

4 Verify s = t ;

5 if so, return “Yes”; else goto Step 1;

Analysis:

If Karp-Rabin is correct: O(n) time is enough;

otherwise, the execution of brute-force algo costs O(mn) time.

Expected running time: E(T) = O(n)(1 − 1

nd) + O(mn) 1

nd = O(n).
(setting d = 1)

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

