
CS612 Algorithm Design and Analysis

Lecture 13. Extending the limits of tractability 1

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

1The slides are made based on Chapter 10 of Algorithm design, and lectures
by D. P. Williamson.

1 / 43

Outline

Introduction to FPT(Fixed parameter tractability) problems;

Solving special cases of NP-Hard problems:
1 Solving a problem when parameters are small:

VertexCover;
2 Solving a problem when connection among sub-problems is

small:

NP-Hard problems might be easy when input is a tree:
IndependentSet, and WeightedIndependentSet;
Extending tree to tree-like: tree-decomposition of graph;

Note:

A particular practical instance of a NP-Hard problem might
has special structure to make it easier than the worst cases.

If we have an efficient algorithm for a tree, it is instructive to
consider whether the algorithm can be extended to deal with a
general graph with small width.

2 / 43

How to deal with hard problems? Trade-off “quality” and

“time”

We have a couple of options:

1 Give up polynomial-time restriction: hope that our algorithms run fast on
the practical instances. (e.g. branch-and-bound, branch-and-cut, and
branch-and-pricing algorithms are used to solve a TSP instance with over
24978 Swedish Cities. See
http://www.tsp.gatech.edu/history/pictorial/sw24978.html)

2 Give up optimum restriction: from “optimal” solution to “nearly optimal”
solution in the hope that “nearly optimal” is easy to find. e.g.,
approximation algorithm (with theoretical guarantee), heuristics, local
search (without theoretical guarantee);

3 Give up deterministic restriction: the expectation of running time of a
randomized algorithm might be polynomial;

4 Give up worst-case restriction: algorithm might be fast on special and
limited cases;

3 / 43

Extending the limit of tractability

4 / 43

Recall the reduction procedure

Polynomial-time reduction: a procedure to transform ANY
instance α of problem A to some instance β = f(α) of
problem B with the following characteristics:

1 (Transformation) The transformation takes polynomial time;
2 (Equivalence) The answers are the same: the answer for α is

“YES” iff the answer to β = f(α) is also “YES”.

Denoted as A ≤P B, read as “ A is reducible to B ”.

5 / 43

Recall the NP-Hardness proof of Independent Set

For a given SAT instance φ with k clauses, constructing an
Independent Set instance (G, k′) as follows:

1 G consists of k triangles: each triangle corresponds to a clause
Ci; the nodes are labeled with the literals; connecting xi and
¬xi with an edge;

2 Set k′ = k;

Example:
(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x5 ∨ x6)

Intuition: edge represents “conflicts”; we should identify k
nodes (each node from a triangle) without connections (no
conflict);

6 / 43

A way to deal with NP-Hard problems

NP-Completeness just means that the the worst-case
instances of the problem are very difficult and unlikely to be
solvable in polynomial time.

However, on a particular practial instance, it is possible that
we are not really in the worst case—the instance we’re looking
at might have some special problem structure that makes our
task easier.

What special problem structure can we utilize?
1 Special parameter: The instance is easier when parameters are

small;
2 Special input structure: The instance is easier if we require the

input to be a tree(a special graph);
3 Extension: “tree-like” graph, a special class of graph with

small tree-width;

7 / 43

Sovling NP-Hard problems when parameters are small: the
iteration number is limited

8 / 43

Small parameter: Parameterized complexity and FPT

problems

In computer science, parameterized complexity (also called
Fixed-Parameter Tractability) is a measure of complexity for
problems with multiple input parameters [R. Downey, M
Fellows, 99].

Motivation: Some hard problems can be solved by algorithms
that are exponential only in the size of a fixed parameter k
while polynomial in the size of the input size n, say,
T (n, k) = O(2kploy(n)).

Hence, if k is fixed at a small value, such problems can still be
considered ’tractable’ despite their traditional classification as
’intractable’.

9 / 43

Two examples

1 For the VertexCover problem, the parameter can be the
number of vertices in the cover.

2 When modeling error correction, one can assume the error
(denoted as k) to be ”small” compared to the total input size.
Then it is interesting to see whether we can find an algorithm
which is exponential only in k, and not in the input size.

10 / 43

Example: finding small vertex covers

Intuition: Given a graph G =< V,E >, how many guards should
be deployed on nodes to surveille ALL the paths?

Formalized Definition:

Input: Given a graph G =< V,E >, and an integer k,
Output: is there a set of nodes S ⊆ V , |S| ≤ k, such that each
edge has at least one of its endpoints in S?

11 / 43

Trial 1: a brute-force algorithm

Brute-force algorithm: enumerating all possible subsets of V
of size k.

Time-complexity: O(kn
(

n
k

)

) = O(knk+1). (There are
(

n
k

)

subsets, and it takes O(kn) time to check whether a subset is
a vertex cover.)

Note: The brute-force algorithm is a polynomial time
algorithm when k is a fixed constant (e.g., k = 2 or k = 3).

12 / 43

Trial 1: a brute-force algorithm cont’d

However, even for moderately small values of k, (say n = 1000
and k = 10), a running time of O(knk+1) is quite impractical.

In contrast, an algorithm with the running-time of O(k2kn) is
appealing since:

1 The algorithm will be practical even when n = 1000 and
k = 10;

2 The expoential dependence on k has been moved out of the
exponent on n and into a separate function.

Question: can we break out the interaction of n and k?

13 / 43

Trial 2: Limited enumeration

Basic idea: Perform limited enumeration. Enumerate all 2k

possibilities for k arbitrarily chosen edges;
1 Consider any edge e = (u, v). In any k-node vertex cover of

G, either u or v should belong to vertex cover S.
2 Suppose that u belongs to S. Then if we delete node u and all

incident edges, we obtain a new graph G− {u}, and there
should be a vertex cover of G′ = G−{u} of size at most k− 1.

14 / 43

Limited enumeration: correctness

Theorem

Let e = (u, v) be any edge of G. G has a vertex cover of size at
most k iff G− {u} or G− {v} has a vertex cover of size at most
k − 1.

Proof.
⇐
Obvious.

⇒

Suppose S is a vertex cover with size at most k, and u ∈ S.
Then S − {u} must cover all edges except the edges incident
to u.

15 / 43

Algorithm V ertexCover(G, k)

1: if G = {} then
2: return {};
3: end if;
4: if |G| > k|V | then
5: return “Infeasible”;
6: end if
7: Arbitrarily select an edge e =< u, v >;
8: Su = V ertexCover(G − {u}, k − 1);
9: Sv = V ertexCover(G − {v}, k − 1);

10: if Su 6= Infeasible then
11: return Su ∪ {u};
12: else if Sv 6= Infeasible then
13: return Sv ∪ {v};
14: else
15: return Infeasible;
16: end if

Note: If G = (V,E) has n nodes and a vertex cover S of size k,
then G has at most k(n− 1) edges. (Reason: each node in S
covers at most n− 1 edges since the maximum degree is n− 1.)

16 / 43

Analysis

Theorem

The recursive algorithm cost O(k2kn) time.

17 / 43

Analysis: Induction proof

Proof.

Let T (n, k) be the running time of searching a vertex cover
with size of k on a graph with n nodes.

We have:

T (n, 1) ≤ cn (1)

T (n, k) ≤ 2T (n − 1, k − 1) + ckn (2)

Suppose T (n, k − 1) ≤ ck2kn. Then we have:

T (n, k) ≤ 2T (n − 1, k − 1) + ckn (3)

≤ 2c(k − 1)2k−1n+ ckn (4)

= c(k − 1)2kn+ ckn (5)

≤ ck2kn (6)

18 / 43

Solving NP-Hard problems on trees: no communications among
sub-problems

19 / 43

Solving NP-Hard problem on trees

Another favor of specical structure: not when the natural
“size” parameters are small, but when the problem structure
is “simple”;

Tree is a simple graph: on a tree, a problem can be
decomposed into “independent” sub-problems. Thus, the
communication between sub-problems are broken.

In fact, it has been found that many NP-Hard graph problems
can be solved efficiently when the underlying graph is tree.

20 / 43

An example: Independent Set Problem

Practical Problem:
Suppose you have n friends, and some pairs of them don’t get
along. How to invite at least k of them to dinner if you don’t want
any interpersonal tension?

Formalized Definition:

Input: Given a graph G =< V,E >. Each node u ∈ V has a
weight w(u) ≥ 0.
Output: to find a set of nodes S ⊆ V such that no two nodes in
S are joined by an edge and

∑

v∈S w(v) is maximized.

21 / 43

Recall the NP-Hardness proof of Independent Set

problem

Note: the generated graph is very special

Question: is the problem still hard when the underlying graph
is a tree?

22 / 43

Independent Set problem is easy when G is a tree.

1 Solution: a set of nodes. Imagine the solving process as a
series of decisions; each decision is to select a node.

2 Suppose we have already worked out the optimal solution O,
where the first decision is made for root node u. There are a
total of 2 options for this step:

1 Select u: This decision decomposes the original problem into
several independent sub-problems, i.e., solving smaller
sub-problems for each sub-trees.

2 Do not select u: This decision also decomposes the original
problem into several independent sub-problems.

3 Thus, we can design the general form of sub-problems as:
selecting independent nodes when the root is seleted or not
selected.

23 / 43

Independent Set problem is easy when G is a tree

24 / 43

A dynamic programming algorithm

General form of sub-problems: to find the maximum weighted
independent set S(u) in sub-tree T (u). Here, T (u) refers to the
sub-tree with node u as its root.

There are only two cases: u ∈ S(u), and u /∈ S(u). In the case
u /∈ S(u), we can include all children of u in S(u).

Optimal substructure: Let OPTin(u) be the maximum weight when
u ∈ S(u), and OPTout(u) be the maximum weight when u /∈ S(u).
We have the following recursions:

OPTin(u) = wu +
∑

v is a child of u

OPTout(v) (7)

OPTout(u) =
∑

v is a child of u

max{OPTout(v), OPTin(v)} (8)

and

OPTin(u) = wu if T (u) = {} (9)

OPTout(u) = 0 if T (u) = {} (10)

25 / 43

Dynamic programming algorithm

MaximumIndependentSetDP (T)

for all nodes in T in posterior order do
if u is a leaf then

Mout[u] = 0;;
Min[u] = w(u);;

else
Mout[u] =

∑

v∈son(u) max{Mout[v],Min[v]};;
Min[u] = wu +

∑

v∈son(u)Mout[v];;
end if

end for
return max{Min[root],Mout[root]};

Time-complexity: O(n). (Reason: we calculate Min and Mout in a
bottom-up manner; at each node u, only O(d) time is needed,
where d denotes the number of children of u.)

26 / 43

From DP to Greedy when w(u) = 1, ∀u ∈ V .

Greedy selection: Consider an edge e = (u, v), where v is a
leaf. Then there exists a maximum independent set containing
v (Why? exchange argument).

Note: removing node u may change a tree to a forest.
Time-complexity: O(n) again.

27 / 43

Solving NP-Hard problem on tree-like graph: the connection
among sub-problems is small

28 / 43

Extension of tree: “tree-like” graph

Why the IndependentSet problem becomes tractable when
the underlying graph is a tree?

Reason: the communication between sub-problems is broken
by removing ONE node, i.e., the sub-problem are independent.

A weak question: If the removal of ONE node cannot
completely cut all communication between sub-problems, can
we achieve this goal through removing a SMALL SET of
nodes?

29 / 43

Tree-like graph

Observations:
1 There might be many cycles in NODE level; however, it is a

tree in TRI-ANGLE level.
2 Removal of a NODE cannot generate independent

sub-problems; however, removal of a TRI-ANGLE will
decompose the graph into parts.

30 / 43

How to change a graph into tree? Tree-decomposition

Definition (Tree decomposition)

A tree-decomposition of a graph G = (V,E) is a tree T ,
where each node t of T corresponds to a subset Vt ⊂ V
(called “pieces” of G). T and Vt must satisfy the following
properties:

1 (Node coverage) Every node of G belongs to at least one piece
Vt.

2 (Edge coverage) The two end nodes of an edge should be
covered by a piece Vt.

3 (Coherence) In tree T , if t2 is in a path from t1 to t3, then
Vt1 ∩ Vt3 ⊆ Vt2 .

31 / 43

Properties of tree-decomposition

The important property of tree that makes things easier:
1 Removal an edge: usually decompose the tree into two

INDEPENDENT parts;
2 Removal a node: usally decompose the tree into a forest

containing INDEPENDENT trees;

The coherence property ensure these two properties for the
tree-decomposition T of a graph G.

32 / 43

Removing a node: generating independent sub-problems

Theorem

(Removing a node) Suppose T − t (a forest) consists of trees
T1, T2, ..., Td. Then the subgraph GT1

− Vt, GT2
− Vt, ..., GTd

− Vt

share no common nodes, and there is no edge connecting any two
subgraphs.

33 / 43

Removing an edge: generating independent sub-problems

Theorem

(Removing an edge) Suppose T −{e} has two branches, namely X
and Y . Correspondingly, G− {Vx ∩ Vy} has two subgraphs:
GX − {VX ∩ Vy}, and GY − {VX ∩ VY }. The two subgraphs share
no common nodes and no edge can connect them.

34 / 43

Tree-width: an intrinsic property of a graph

Every graph G has a tree-composition. (A trivial
tree-decomposition: T has only one node t, and Vt = V . (See
an extra slide)

We are interested in the tree-composition with small pieces.
(Intuition: removal of a piece will break the graph into
INDEPENDENT parts.)

Definition (Tree-Width)

TreeWidth(G) = maxt |Vt| − 1.

Note: Why −1? Just to make the tree-width of a tree be 1.

35 / 43

An example: tree-decomposition of a tree

Tree-decomposition of a tree G = (V,E):

For each node u ∈ V , create a piece Vu, and for each edge e,
create a piece Ve.
Connecting two pieces if they share a common node.
Verify the three requirements and TreeWidth(G) = 1.

36 / 43

Theorem

A connected graph G has a width of 1 iff G is a tree.

Proof.

Suppose G is not a tree but width(G) = 1.

There is a cycle C in G. Consider two edges e = (u, v) and
e′ = (u′, v′). The corresponding pieces are denoted as Ve and Ve′ .

There should be a path connecting Ve and Ve′ in T . (by the
connection property of tree.)

Consider a path (x, y) in the path, and Vx 6= Vy. Thus Vx ∩ Vy ≤ 1.

Thus the removal of Vx ∩ Vy will decompose C into two
INDEPENDENT parts. (by the previous Theorem)

However, we cannot decompose a cycle into two INDEPENDENT
part through removing ONLY one edge.

37 / 43

Fact: Suppose H is a subgraph of G. We have width(H) ≤ width(G).

(Argument: constructing TH based on TG: V
H
t = V G

t ∩H . Verify the

three requirements.)

38 / 43

F

inding maximum independent set in a general graph

39 / 43

Finding maximum independent set in a general graph I

Basic idea:

For a general graph G = (V,E), we construct its
tree-decomposition T first.

Let’s travel T in the bottom-up manner

Consider node t of tree T . The maximum independent set
intersects the piece Vt onto a subset U .

However, we have no idea what nodes that U has.

Solution: enumerate all possibility of U within Vt. This
operation costs at most 2w+1 time.

The properties of T ensure that the sub-problems
corresponding to sub-trees of t can be INDEPENDENTLY
solved as soon as U is determined.

40 / 43

Finding maximum independent set in a general graph II

Key observation: (sub-problem) For each sub-tree Tt, we
define a FAMILY of sub-problems: for each subset U ∈ Vt, we
use ft(U) to denote the value of the maximum independent
set in Gt, where U is an independent set.

41 / 43

Finding maximum independent set in a general graph III

Optimal substructure:
ft(U) = w(U) +

∑d
i=1 max{fti(Ui)− w(Ui ∩ U)}, where

Ui ∩ Vt = U ∩ Vti and Ui ⊂ Vti is an independent set.

42 / 43

Finding maximum independent set in a general graph IV

Time-complexity: O(2wwn).

Note: the practical graph, say network and residue contact
map, usually have small width.

43 / 43

