Assignment Problems

Guoming Tang
A Practical Problem

• **Workers:** A, B, C, D **Jobs:** P, Q, R, S.

• **Cost matrix:**

<table>
<thead>
<tr>
<th></th>
<th>Job P</th>
<th>Job Q</th>
<th>Job R</th>
<th>Job S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Worker B</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Worker C</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Worker D</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

• **Given:** each worker need perform only one job and each job need be assigned to only one worker.

• **Question:** how to assign the jobs to the workers to minimize the cost?
Assignment Problem

• Teachers vs. Courses
 – Performance
 – Maximize the total performance

• Jobs vs. Machines
 – Time
 – Minimize the total time

•
Formulation of Assignment Problem

• Consider *m* workers to whom *n* jobs are assigned.
• The cost of assigning worker *i* to job *j* is *c*_{ij}.

• Let

\[x_{ij} = \begin{cases}
1, & \text{if job } j \text{ is assigned to worker } i \\
0, & \text{if job } j \text{ is not assigned to worker } i
\end{cases} \]
Formulation of Assignment Problem

- **Objective function:**

\[
\text{Minimize} \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij}
\]

- **Constraints:**

\[
\sum_{i=1}^{n} x_{ij} = 1 \quad \text{for } j = 1, 2, \ldots, n
\]

\[
\sum_{j=1}^{m} x_{ij} = 1 \quad \text{for } i = 1, 2, \ldots, m
\]

\[
x_{ij} = 0 \text{ or } 1
\]

Each worker is assigned one job

Each job is assigned one worker
Solution of Assignment Problem

- **Brute-force method**
 - Enumerate all candidates sets
 - $n!$ possible assignment sets
 - **Exponential** runtime complexity

$$
\begin{align*}
4! &= 24 \\
10! &= 3,628,800 \\
100! &\approx 9.3 \times 10^{157}
\end{align*}
$$
Solution of Assignment Problem

• Simplex method
 – Is it feasible to solve AP? Yes.
 – [The Integrality Theorem] If a transshipment problem: minimize cx subject to $Ax=b$, $x \geq 0$, such that all the components of b are integers, has at least one feasible solution, then it has an integer-valued feasible solution; if it has an optimal solution, then it has an integer-valued optimal solution.
Solution of Assignment Problem

• Simplex method
 – More variables (an n assignments needs n^2 variables.)
 – More slack variables result in a sparse dictionary matrix, which may lead to more iterations.
 – Inefficient.
Solution of Assignment Problem

• Network simplex method
 – Tree based network optimization method
 – Can apply to transshipment problem, maximum flows through networks
 – Works well in practice for assignment problems.
 – Is there any easier way to solve the assignment problem?
Hungarian Method

Introduction

• A combinatorial optimization algorithm
 – Based on two Hungarian mathematicians’ works
 – Developed and published by Harold Kuhn, 1955

• Polynomial runtime complexity
 – [Wikipedia] $O(n^4)$, can be modified to $O(n^3)$

• Much easier to implement
Hungarian Method
Process (1/5)

• Assume the cost matrix

\[
c = \begin{pmatrix}
5 & 6 & 7 & 6 \\
4 & 3 & 2 & 3 \\
2 & 3 & 5 & 2 \\
5 & 5 & 2 & 8 \\
\end{pmatrix}
\]

\[
c' = \begin{pmatrix}
0 & 0 & 2 & 1 \\
2 & 0 & 0 & 1 \\
0 & 0 & 3 & 0 \\
3 & 2 & 0 & 6 \\
\end{pmatrix}
\]

• For each row, subtract the minimum number in that row from all numbers in that row; do the same for each column.

• [Network optimization: Theorem 2.9] There exists an optimal solution, when # of assignments = minimum # of lines required to cover all 0s.
Hungarian Method
Process(2/5)

• How can we find the optimal solution?
• One efficient way in [Network optimization]
 – (a) Locate a row/column in c’ with exactly one 0, circle it and draw a vertical/horizontal line through it. If no such row/column exists, locate a row/column with the smallest number of 0s.
 – (b) Repeat (a) till every 0 in the matrix has at least one line through it.
 – (c) If # of lines equal to n, the circled 0s show the optimal solution.
• Apply it to c’.
Hungarian Method
Process(3/5)

• Why is it optimal?

\[
c' = \begin{pmatrix}
0 & 0 & 2 & 1 \\
2 & 0 & 0 & 1 \\
0 & 0 & 3 & 0 \\
3 & 2 & 0 & 6
\end{pmatrix}
\]

• [Network optimization: Theorem 2.17]
Suppose \(c \) is the cost matrix and \(c' \) is the matrix obtained by adding a number \(t \) to each element in the \(i \)th row or to each element in the \(i \)th column. Then a solution is optimal with respect to \(c' \) if and only if it is optimal with respect to \(c \).
Hungarian Method
Process(4/5)

• Is that all? No.

\[c' = \begin{bmatrix}
3 & 0 & 2 & 1 \\
2 & 4 & 0 & 1 \\
0 & 0 & 3 & 0 \\
3 & 2 & 0 & 6
\end{bmatrix} \]

• No matching can result in 0 total cost.

• Remember: (c) If # of lines equals to \(n \), we find the optimal solution.

Then what if # of lines is not equal to \(n \)?
Hungarian Method

Process(5/5)

• Modify c' further:

\[
c' = \begin{pmatrix}
3 & 0 & 2 & 1 \\
2 & 4 & 0 & 1 \\
0 & 0 & 3 & 0 \\
3 & 2 & 0 & 6
\end{pmatrix}
\]

• Subtract the smallest uncovered element from each uncovered element and add it to each doubly covered element.

\[
c'' = \begin{pmatrix}
2 & 0 & 2 & 0 \\
1 & 4 & 0 & 0 \\
0 & 1 & 4 & 0 \\
2 & 2 & 0 & 5
\end{pmatrix}
\]

• Check the solution.
Hungarian Method
the Whole Course

• 1. Given the cost matrix \(c (n \times n)\), get modified \(c'\):
 – (a) For each row, subtract the minimum number in that row from all numbers in that row
 – (b) Do the same for each column.

• 2. Check if there exists an optimal solution:
 – (a) Locate a row/column in modified matrix with exactly one 0, circle it and draw a vertical/horizontal line through it. If no such row/column exists, locate a row/column with the smallest number of 0s.
 – (b) Repeat (a) until every 0 in the matrix has at least one line through it.
 – (c) If # of lines = \(n\), the circled 0s show the optimal solution, end; if not, go to step 3.

• 3. Further modify \(c'\):
 – (a) Subtract the smallest uncovered element from each uncovered element and add it to each doubly covered element.
 – (b) Repeat step 2.
Hungarian Method
Special Considerations

• Special considerations:
 • Hungarian method requires # of rows = # of columns. What if not?
 • Considering a case like assigning workers to jobs, what if worker i cannot do job j?
 • Maximization objective, such as maximize the profits.

• Solutions:
 • Add dummy rows/columns with 0 assignment costs
 • Assign $c_{ij} = +M$
 • Create a loss matrix
Hungarian Method
an Example (1/7)

• Teachers: A, B, C, D; Courses: P, Q, R

• Teachers’ performance matrix

\[
\begin{array}{ccc}
P & Q & R \\
A & 90 & 76 & 67 \\
B & 68 & 70 & 69 \\
C & 75 & 72 & 71 \\
D & 69 & 65 & 65 \\
\end{array}
\]

• Assign courses to teachers to maximize the sums of their performance.
Hungarian Method
an Example (2/7)

- **Transfer Maximum to Minimum:**
 - Create the *loss matrix*: subtract each score in each column from the highest score in that column.

\[
\begin{array}{ccc}
 & P & Q & R \\
A & 0 & 0 & 4 \\
B & 22 & 6 & 2 \\
C & 15 & 4 & 0 \\
D & 21 & 11 & 6 \\
\end{array}
\]

- Add a dummy column with 0 score loss.

\[
\begin{array}{cccc}
 & P & Q & R & S \\
A & 0 & 0 & 4 & 0 \\
B & 22 & 6 & 2 & 0 \\
C & 15 & 4 & 0 & 0 \\
D & 21 & 11 & 6 & 0 \\
\end{array}
\]

Cost matrix \(c \)
Hungarian Method
an Example (3/7)

• Step 1. Given the cost matrix c, get modified c'

\[
c = \begin{pmatrix}
0 & 0 & 4 & 0 \\
22 & 6 & 2 & 0 \\
15 & 4 & 0 & 0 \\
21 & 11 & 6 & 0 \\
\end{pmatrix}
\]

\[
c' = \begin{pmatrix}
0 & 0 & 4 & 0 \\
22 & 6 & 2 & 0 \\
15 & 4 & 0 & 0 \\
21 & 11 & 6 & 0 \\
\end{pmatrix}
\]
Hungarian Method
an Example (4/7)

• Step 2. check if there exists an optimal solution

\[
c' = \begin{pmatrix}
0 & 0 & 4 & 0 \\
22 & 6 & 2 & 0 \\
15 & 4 & 0 & 0 \\
21 & 11 & 6 & 0
\end{pmatrix}
\]

• # of lines \neq 4, go to step 3.
Hungarian Method
an Example (5/7)

• Step 3. Further modify c'

\[
c' = \begin{pmatrix}
0 & 0 & 4 & 0 \\
22 & 6 & 2 & 0 \\
15 & 4 & 0 & 0 \\
21 & 11 & 6 & 0
\end{pmatrix}
\]

\rightarrow

\[
c'' = \begin{pmatrix}
0 & 0 & 8 & 4 \\
18 & 2 & 2 & 0 \\
11 & 0 & 0 & 0 \\
17 & 7 & 6 & 0
\end{pmatrix}
\]

• # of lines ≠ 4, continue step 3.
Hungarian Method
an Example (6/7)

• Step 3. Further modify \(c'' \)

\[
\begin{bmatrix}
0 & 0 & 8 & 4 \\
18 & 2 & 2 & 0 \\
11 & 0 & 0 & 0 \\
17 & 7 & 6 & 0
\end{bmatrix}
\quad \rightarrow \quad
\begin{bmatrix}
0 & 0 & 8 & 6 \\
16 & 0 & 0 & 0 \\
11 & 0 & 0 & 2 \\
15 & 5 & 4 & 0
\end{bmatrix}
\]

• \# of lines = 4, get the optimal solution.
Hungarian Method
an Example (7/7)

• The optimal solution

• Assignment:
 – A—P, B—R, C—Q or A—P, B—Q, C—R

• Maximum score:
 – \[Z = 90 + 69 + 72 = 90 + 70 + 71 = 231 \]
Tools for AP & LP

• LINGO: a comprehensive tool designed to help you build and solve linear, optimization models quickly, easily, and efficiently. (http://www.lindo.com/)

• MATLAB: \texttt{linprog} function for general LP; Toolbox \texttt{YALMIP} for (mixed) integer LP.

•
Thanks for Your Attention.

Assignment Problems

Guoming Tang