ALGORITHM 245
TREESORT 3 [M1]
Robert W. Floyd (Reed. 22 June 1964 and 17 Aug. 1964)

procedure TREESORT 3 (M, n);
value n; array M; integer n;

comment TREESORT 3 is a major revision of TREESORT
[R. W. Floyd, Alg. 113, Comm. ACM 6 (Aug. 1962), 434] sug-
spected by HEAPSORT [J. W. J. Williams, Alg. 232, Comm.
ACM 7 (June 1964), 347] from which it differs in being an in-place
sort. It is shorter and probably faster, requiring fewer compar-
isons and only one division. It sorts the array $M[1:n]$, requiring
no more than $2 \times (2^p-2) \times (p-1)$, or approximately $2 \times
n \times (\log(n)-1)$ comparisons and half as many exchanges in the
worst case to sort $n = 2^p - 1$ items. The algorithm is
most easily followed if M is thought of as a tree, with $M[j+2]$
the father of $M[j]$ for $1 < j \leq n$;

begin
\begin{verbatim}
procedure exchange (x, y); real x, y;
 begin real t; $t := x$; $x := y$; $y := t$
 end exchange;

procedure siftup (i, n); value i, n; integer i, n;
 comment $M[i]$ is moved upward in the subtree of $M[1:n]$ of
 which it is the root;
 begin real copy; integer j;
 copy := $M[i]$;
 loop: $j := 2 \times i$;
 if $j \leq n$ then
 begin if $j < n$ then
 begin if $M[j+1] > M[j]$ then $j := j + 1$ end;
 if $M[j] > copy$ then
 begin $M[i] := M[j]$; $i := j$; go to loop end
 end;
 $M[i] := copy$
 end siftup;

integer i;
for $i := n+2$ step -1 until 2 do siftup (i, n);
for $i := n+2$ step -1 until 2 do
begin siftup $(1, i)$;
 comment $M[j+2] \geq M[j]$ for $1 < j \leq i$;
 exchange $(M[1], M[i])$;
 comment $M[1:n]$ is fully sorted;
end
end TREESORT 3
\end{verbatim}

ALGORITHM 246
GRAYCODE [Z]
J. Boothroyd* (Reed. 18 Nov. 1963)
English Electric-Leo Computers, Kidsgrove, Stoke-on-
Trent, England
* Now at University of Tasmania, Hobart, Tasmania, Aust.

procedure graycode (a) dimension: (n) parity: (s); value n, s;
Boolean array a; integer n; Boolean s;

comment elements of the Boolean array $a[1:n]$ may together be
considered as representing a logical vector value in the Gray
cyclic binary code. [See e.g. Phister, M., Jr., Logical Design of
procedure changes one element of the array to form the next
value in ascending sequence if the parity parameter $s = true$
or in descending sequence if $s = false$. The procedure
may also be applied to the classic “rings-o-seven” puzzle [see
K. E. Iverson, A Programming Language, p. 63, Ex. 1.5];
begin integer i, j; $j := n + 1$;
for $i := n$ step -1 until 1 do if $a[i]$ then begin $s := \neg s$;
 $j := i$ end;
if s then $a[1] := \neg a[1]$ else if $j < n$ then $a[j+1] := \neg a[j+1]$;
else $a[n] := \neg a[n]$
end graycode

ALGORITHM 247
RADICAL-INVERSE QUASI-RANDOM POINT
SEQUENCE [G5]
J. H. Halton and G. B. Smith (Reed. 24 Jan. 1964 and
21 July 1964)
Brookhaven National Laboratory, Upton, N. Y., and
University of Colorado, Boulder, Colo.

procedure QRPSH (K, N, P, Q, R, E);
integer K, N; real array P, Q; integer array R; real E;

comment This procedure computes a sequence of N quasi-
random points lying in the K-dimensional unit hypercube
given by $0 < x_i < 1$, $i = 1, 2, \cdots, K$. The ith component of the
mth point is stored in $Q[m,i]$. The sequence is initiated by a
“zero-th point” stored in P, and each component sequence is
iteratively generated with parameter $R[i]$. E is a positive error-
parameter. K, N, E, and the $P[i]$ and $R[i]$ for $i = 1, 2, \cdots, K$,
are to be given.

The sequence is discussed by J. H. Halton in Num. Math. 2
(1960), 84-90. If any integer n is written in radix-R notation as
$n = n_0 \cdots n_{m-1}$, $0 = n_0 + n_1 R + n_2 R^2 + \cdots + n_{m-1} R^{m-1}$,
and reflected in the radical point, we obtain the R-inverse func-
tion of n, lying between 0 and 1,
\[
\phi_R(n) = n_0 n_1 n_2 \cdots n_{m-1} = n_0 R^{m-1} + n_1 R^{m-2} + \cdots + n_{m-1} R^0
\]
\[
= n_0 R^{m-1} + \cdots + n_{m-1} R^0.
\]
The problem solved by this algorithm is that of giving a com-
plete procedure for the addition of R^i, in any radix R, to a frac-
tion, with downward “carry”.

If $P[i] = \phi_R(s)$, as will almost always be the case in practice,
with s a known integer, then $Q[m,i] = \phi_R(s+m)$. For quasi-
randomness (uniform limiting density), the integers $R[i]$ must
be mutually prime.

For exact numbers, E would be infinitesimal positive. In prac-
tice, round-off errors would then cause the “carry” to be in-
correctly placed, in two circumstances. Suppose that the stored
number representing $\phi_E(n)$ is actually $\phi_R(n) + \Delta$. (a) If $|\Delta|$ \[
\geq R^{-m-1}, \text{we see that the results of the algorithm become un-}
\]